EXAMPLE of a basic study plan if the Master's course were to be started in a WINTER semester.

NOTE: This is an exemplary study plan and intended as a principle basic guide. It does not account for all possibilities you have in structuring your studies.

Module name	Module general topic (& type)	Mandatory/ Elective	Workload ¹⁾ per module per semester in ECTS credits SEMESTER			Semester offered s – summer w – winter	
Advanced Experimental Physics 1 (cf. point 3) below)	Atoms, lasers & (quantum) optics (lecture & tutorials)	M 3)	10				w
Advanced Theoretical Physics 1 (cf. point 4) below)	Advanced Quantum Mechanics (lecture & tutorials)	M ⁴⁾	10				w
Advanced Laboratory Courses	Advanced practical laboratory courses	M	5	5			s & w
Physics elective courses	(type/structure of specific course apply)	E	10	10			s & w
Elective courses (other than physics)	(type/structure of specific course apply)	E	5				s & w
Advanced Experimental Physics 2 (cf. point 3) below)	Particle and astroparticle physics (lecture & tutorials)	M <u>3)</u>		10			s
Advanced Experimental Physics 2 (cf. point 3) below)	Solid-State Physics (lecture & tutorials)	M <u>31</u>		10			s
Advanced Theoretical Physics 2 (cf. point 4) below)	Advanced Solid-State- Physics (lecture & tutorials)	M 4)		10			s
Physics seminar		E		5			s & w
Specialization/orientation phase		M			15		s & w
Project planning & preparation		M			15		s & w
Master thesis	thesis work	M				25	s & w
	oral colloquium (presentation and Q&A)					5	s & w

¹⁾ One ECTS credit corresponds to a workload of 25 to 30 hours.

²⁾ Type and requirements of an examination and a module depend on the specific examination rules ((Fach-)Prüfungsordnung and/or module-handbook) of the (non physics) department.

3) At least one of the mandatory EXPERIMENTAL lecture modules has to be successfully accomplished.

⁴⁾ At least one of the mandatory THEORY lecture modules has to be successfully accomplished.